Diverse lamin-dependent mechanisms interact to control chromatin dynamics
نویسندگان
چکیده
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals. Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
منابع مشابه
Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation.
Embryonic stem cells are characterized by unique epigenetic features including decondensed chromatin and hyperdynamic association of chromatin proteins with chromatin. Here we investigate the potential mechanisms that regulate chromatin plasticity in embryonic stem cells. Using epigenetic drugs and mutant embryonic stem cells lacking various chromatin proteins, we find that histone acetylation,...
متن کاملExploring chromatin organization mechanisms through its dynamic properties
The organization of the genome in the nucleus is believed to be crucial for different cellular functions. It is known that chromosomes fold into distinct territories, but little is known about the mechanisms that maintain these territories. To explore these mechanisms, we used various live-cell imaging methods, including single particle tracking to characterize the diffusion properties of diffe...
متن کاملLBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation
Eukaryotic cells have a layer of heterochromatin at the nuclear periphery. To investigate mechanisms regulating chromatin distribution, we analyzed heterochromatin organization in different tissues and species, including mice with mutations in the lamin B receptor (Lbr) and lamin A (Lmna) genes that encode nuclear envelope (NE) proteins. We identified LBR- and lamin-A/C-dependent mechanisms tet...
متن کاملLoss of lamin A function increases chromatin dynamics in the nuclear interior
Chromatin is organized in a highly ordered yet dynamic manner in the cell nucleus, but the principles governing this organization remain unclear. Similarly, it is unknown whether, and how, various proteins regulate chromatin motion and as a result influence nuclear organization. Here by studying the dynamics of different genomic regions in the nucleus of live cells, we show that the genome has ...
متن کاملChromatin dynamics and in vitro biomarkers in laminopathies: an overview
Chromatin regulation in eukaryotes occurs through complex and interconnected mechanisms that ensure heterochromatin maintenance and compartmentalization of chromosome domains, genome stability, chromatin conformational changes before and after mitosis, gene silencing and transcriptional activation and chromatin remodeling at specific promoters. We refer to these events as a whole using the term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014